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The flea model by Ehrenfest describes the jumps of a fixed number of fleas between two dogs. In each time
step a randomly selected flea jumps on the other dog. We study directed and undirected multiurn models in a
one-dimensional ring. The introduced models represent generalizations of three recently proposed multiurn
models which themselves are generalizations of Ehrenfest’s model. The models are solved analytically. For the
directed case we find oscillations of the average number of balls or fleas in a certain urn before the system
reaches its equilibrium state. The discussed models may serve as basic models of dynamics of granular media
in connected periodic compartment systems.
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INTRODUCTION

The famous Ehrenfest model describes the process of
equilibration together with thermal fluctuations around the
stationary state �1,2�. A total number of N fleas sit on two
dogs. In a time step a randomly selected flea jumps from one
dog to the other. In Ref. �3� we introduced a generalized
model where each flea jumps with a given probability p. Kao
and Luan recently introduced another generalization of
Ehrenfest’s model �4�. The authors arrange M dogs in a
circle where repeatedly a randomly chosen flea hops to the
right side neighbor dog. In a succeeding model a randomly
picked flea hops from dog j to dog j+k with probability
pk , k=1,… ,M �5�. As common features of both models,
first, only directed jumps are allowed, and second, only one
flea can hop per time step. These rather restrictive assump-
tions had the tradeoff to yield relatively simple solutions.
Here we demonstrate that an analytical solution is still attain-
able in the more general case where all fleas can jump in a
time step. This generalization applies for systems in which
fleas, balls, or granular particles, can simultaneously change
their dog, box, or container compartment, respectively. Par-
ticle dynamics in vibrating containers consisting of, say, M
�connected� compartments, where a particle can hop from
one compartment to another, has been extensively discussed
in the literature; see Refs. �6,7� and references therein. Con-
sequently, the models we discuss in this article may serve as
basic models for granular dynamics of particles in container
compartments being relevant in a variety of technological
and industrial processes �8,9�.

I. NEXT NEIGHBOR MODEL

We start with an undirected nearest neighbor model. Sup-
pose that M dogs are harassed by N �distinguishable� fleas
where the dogs form a circle �see Fig. 1�. Let nt

= �n1
t ,n2

t ,… ,nM
t � be the state vector, i.e., nd

t denotes the num-
ber of fleas on dog d=1,2 ,… ,M at time step t=0, 1,… . At
a time step t a flea jumps with probability p to the left, or
with probability p to the right next neighbor dog, or remains
on its victim with probability 1−2p. Let Pd

t �n� denote the
probability to find n fleas on dog d at time t. We now derive
Pd

t �n� returning to the picture of N uncoupled one-flea sys-
tems.

II. ONE-FLEA SYSTEMS

Let Qf
t�d� denote the probability to find flea f =1,… ,N at

time t on dog d when the flea initially was on dog df
0. To find

Qf
t�d�, we use the method of Markov chains. Let Ap be the

symmetric M �M Markov matrix

�Ap� j
k = �1 − 2p�� j,k + p�� j,k−1 + � j,k+1� �1�

where � j,k is Kronecker’s symbol and periodic boundary con-
ditions are assumed, that is, indices j�1 are identified with
j+M, and indices j�M with j−M, respectively. Let � j de-
note the jth eigenvalue of Ap and xj

k denote the kth compo-
nent of the jth eigenvector of Ap where j ,k=1,… ,M. Fur-
ther, let � denote the diagonalized matrix to the
decomposition Ap=X�XT with X��xj

k� , XTX=1. The eigen-
values of Ap can be expressed as

� j,p = 1 + 2p�cos�2�j

M
� − 1	 , �2�

and the corresponding eigenvectors are

xj
k =

1

M

�cos�2�jk

M
� + sin�2�jk

M
�	 . �3�

As a consequence, we obtain the single-flea probability dis-
tribution

FIG. 1. �Color online� Schematic of the model for N=10 fleas
on M =7 dogs. Depending on the model version discussed, in a time
step a flea can jump to the next neighbor dog, or to the kth neighbor
dog.

PHYSICAL REVIEW E 72, 056129 �2005�

1539-3755/2005/72�5�/056129�5�/$23.00 ©2005 The American Physical Society056129-1

http://dx.doi.org/10.1103/PhysRevE.72.056129


Qf ,p
t �d� = �

j=1

N

� j,p
t xj

dxdf
0

j . �4�

Equipped with Eq. �4�, we return to N fleas. Assuming nd
0

fleas on dog d at time t=0, Pd
t �n� can be readily derived. We

simply have to add up all possibilities to end up with n fleas
at time t when starting with nd

0. To archive this, we have to
sum over all combinations bj =0,1, j=1,… ,N, that represent
a total number of n fleas, i.e., �bj =n:

Pd
t �n� = �

�
i=1

N
bi=n,

bj=0,1

�
f=1

N

Qf ,p
t �d�bj�1 − Qf ,p

t �d��1−bj . �5�

The powers in Eq. �5� are either 0 or 1, depending on
whether flea j contributes to the total number of n fleas or
not. As a consequence, for bj =1 the probability Qf ,p

t �d� is
summed up whereas the probability 1−Qf ,p

t �d� contributes
for bj =0 exclusively. Alternatively, the powers can be elimi-
nated by writing

Pd
t �n� = �

�
i=1

N
bi=n,

bj=0,1

�
f=1

N

1 − bj − Qf ,p
t �d� �6�

which is a simpler expression.

III. ALL FLEAS ON THE FIRST DOG

When all N fleas sit at time t=0 on, say, the first dog �d
=1�, Eqs. �5� and �6� are greatly simplified to

Pd
t �n� = �N

n
�Q1,p

t �d�n�1 − Q1,p
t �d��N−n �

N	1qne−q

n!
�7�

where q�NQ1,p
t �d�. Consequently, the average number of

fleas on dog d is given by

�nd�t = Q1,p
t �d�N�

n=1

N

n�N

n
��1 − Q1,p

t �d��N−n �8�

�
N	1

q�1 −
qNe−q

N!
� . �9�

Figure 2 shows the fraction of the total number of fleas when
initially all fleas are placed on dog d=1 for various values of
the jump rate p. The system relaxes to its equilibrium state
nt→ �N /M ,… ,N /M� for t→
 the faster the higher is the
jump rate p. Figure 3 shows the corresponding log-log plot
for different numbers of fleas N. Due to the independence of
the fleas the graphs of the average number of fleas on dog
d=1 merge into one line even for different values of N. As
expected, the slope � of the line is approximately �=1/2
resulting from the time evolution of the distribution’s peak
height of a random walker which is determined by the recip-
rocal variance: 1 /��t�� t−1/2 �3,10�.

IV. GENERAL UNDIRECTED MODEL

We now discuss the case where the fleas are allowed to
jump to the dogs they want to. Let pk denote the probability
to jump from the jth to the �j+k�th dog whereas dog M +1 is
identified with dog 1. For M even the normalization condi-
tion reads

FIG. 2. Fraction of the average number of fleas on dog d=1 as
a function of time assuming all fleas on dog d=1 at time t=0. The
next neighbor jump rate p is varied for the case of N=50 fleas on
M =5 dogs.

FIG. 3. Log-log plot of the fraction of the average number of
fleas on dog d=1 versus time for N=5,15,25,50 fleas on M =30
dogs. Initially all fleas were placed on dog d=1. Here, only jumps
to the next neighbor dogs with probability p=1/3 are allowed. A
flea stays on his host with probability 1−2p=2/3.
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p0 + 2 �
k=1

M/2−1

pk + pM/2 = 1; �10�

for M odd

p0 + 2 �
k=1

�M−1�/2

pk = 1 �11�

holds. For simplicity, in this section let us restrict ourselves
to M even. For this case, the Markov matrix reads

�Ap� j
k = p0� j,k + �

l=0

M/2

pl�� j,k−l + � j,k+l� . �12�

Due to its symmetry the eigenvectors of Ap are also given by
Eq. �3�. The corresponding eigenvalues differ from Eq. �2�,
being

� j,p = p0 + 2 �
k=1

M/2−1

pk cos�2�jk

M
� + pM/2�− 1�k, �13�

where p indicates the dependence on the set of probabilities
pk ,k=0,… ,M /2. We obtain therefore the one-flea probabil-
ity distribution

Qf ,p
t �d� = �

j=1

N

� j,p
t xj

dxdf
0

j . �14�

For the special case p1= pM−1= p , pk=0, k=2,… ,M −2 one
obtains the next neighbor model discussed in the previous
sections.

V. DIRECTED TRANSITIONS

So far we considered undirected state transitions, i.e., the
fleas made no difference between left and right. In this para-
graph we investigate the simplest possible model for directed
next neighbor transitions. A flea jumps with probability p
from dog d to next dog d+1 and remains on its host with
1− p. Hence, the corresponding transition matrix Bp is asym-
metric:

�Bp� j
k = �1 − p�� j,k + p� j,k−1. �15�

Its eigenvalues are

 j,p = 1 + p�exp�−
2�ij

M
� − 1	 , �16�

where i2=−1 �as throughout the article in the argument of
exponentials�. The corresponding eigenvectors are

yj
k =

1

M

exp�2�ijk

M
� . �17�

Thus, we finally obtain the one-flea distribution

Q̃f ,p
t �d� = �

j=1

N

 j,p
t yj

dydf
0

j* , �18�

where the asterisk represents the imaginary conjugate, and as
expected, the imaginary eigenvectors combine to real prob-

abilities. Interestingly, N fleas in the directed Ehrenfest next
neighbor multiurn model by Kao and Luan �4� behave like
one single flea that jumps with probability p=1/N. Conse-
quently, for p=1/N, matrix �15� is equal to those in Eq. �7�
in Ref. �4� specifying the transitions of the average number
of fleas in the directed Ehrenfest next neighbor model. Fig-
ure 4 shows the fraction of the average number of fleas on

FIG. 4. Average number of fleas on dog d=1 as a function of
time for N=50 fleas on M =5 dogs. The fraction, i.e., �n�t /N, is
displayed for the case that all fleas were at the beginning on dog
d=1. Here, only jumps to the right neighbor dog with probability p
are allowed. A flea stays on its victim with probability 1− p.

FIG. 5. Average number of fleas on dog d=1 as a function of
time for N=50 fleas on M =2, 5, 10, and 20 dogs. The fraction, i.e.,
�n�t /N, is displayed for the case that all fleas were at time t=0 on
dog d=1. In the model only jumps to the right neighbor dog with
probability p=1/3 are allowed. A flea stays on its host with prob-
ability 1− p=2/3.
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dog 1 for different values of the jump probability p for the
initial condition that all fleas sat at the beginning on dog d
=1. Strikingly, oscillations occur before the system reaches
its equilibrium state. A second observation is that, as ex-
pected, the smaller the jump probability p the longer the
transition time to the equilibrium state. Both observations are
due to the circular arrangement of the dogs, that is, a flea
returns to an individual dog after t=M hops. Figure 5 dis-
plays the dependence on the system size M where the jump
probability is fixed to p=1/3. Similarly to the studies by Kao
�4� oscillations occur for M �3. Figure 6 reveals the time
period �=M / p of the oscillations. A flea peak wanders from
dog to dog faster the higher is the value of p. Having passed
M dogs the peak appears at the starting position. In Ref. �4�
a suitable analytical approximation for the case p=1/N and
the limit for small values of p is given.

VI. GENERAL DIRECTED MODEL

We now include jumps from dog j to the �j+k�th dog with
probability pk for k�1. The eigenvalues of the system are
given by

 j,p = p0 + �
k=1

M

pk exp�−
2�ijk

M
� . �19�

The corresponding eigenvectors are identical with those in
Eq. �17�. Consequently, we readily can write the single-flea
probability distribution

Q̃f ,p
t �d� = �

j=1

N

 j,p
t yj

dydf
0

j* . �20�

VII. THE pq MODEL

Let us consider a simplification of the model which rep-
resents a generalization of the so-called pq model introduced
by Kao �5�. It describes the simple case where all probabili-
ties assumed to vanish except the first and the �M −1�th, i.e.,
p1= p , pM−1=q. In contrast to Kao’s model each flea can
jump in a time step. Let us further assume p0=1− p−q. From
Eq. �19� we read off the eigenvalues being

 j,p,q = 1 + p�e2�ij/M − 1� + q�e−2�ij/M − 1� . �21�

Remember that the eigenvectors are independent of the
choice of the probabilities pk. Interestingly, for p=q, and N
=1, the model is equivalent to a random walker in a one-
dimensional ring. For p=q the model is equivalent to the
undirected jump model and thus displays no oscillations.
Figure 7 shows the fraction of the average number of fleas on
dog d=1 when initially all fleas start on it for various values
of p and q with p+q= 1

2 . As expected, for p�q oscillations
occur.

CONCLUSION

To conclude, we introduced straightforward generaliza-
tions of three recently proposed multiurn models. For the
models time discrete solutions were derived analytically.
Strikingly, for the directed case we identified oscillations in
the system as a consequence of the circle topology. Handy

time continuous approximations as limiting cases of Ehren-
fest models have been extensively discussed in the literature;
see, e.g., Refs. �2,4,5,11� and references therein. The histori-
cal arbitrary restriction that only one flea jumps in a time
step was dropped. As a consequence, the models better serve
as basic models in the context of granular media �in

FIG. 6. Average number of fleas on the dog d=1 versus time for
N=5, 15, 25, 50 fleas on M =30 dogs. The fraction, i.e., �n�t /N, is
displayed for the case that all fleas were initially on dog d=1.
Model and jump rate as in Fig. 5.

FIG. 7. The pq model. Fraction of the average number of fleas
on dog d=1 versus time for N=10 fleas on M =10 dogs. The frac-
tion, i.e., �n�t /N, is displayed assuming at time t=0 all fleas are on
dog d=1. Here, only jumps to the right neighbor dog with probabil-
ity p and jumps to the �M −1�th neighbor dog with probability q are
allowed. A flea stays on its victim with probability 1− p−q.
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circularly arranged containers� than Ehrenfest models do.
For instance, one may think of granular dynamics that can be
modeled when the system’s jump rate distribution p�k�
�k being the relative compartment position� is known.
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